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Summary: We characterize the motion of charged as well as neutral tracers, in an

electrolyte embedded in a varying section channel. We exploit a set of systematic

approximations that allows us to simplify the problem, yet capturing the essential

of the interplay between the geometrical confinement provided by the corrugated

channel walls and the electrolyte properties. Our simplified approach allows us to

characterize the transport properties of corrugated channels when a net flux of

tracers is obtained by keeping the extrema of the channel at different chemical

potentials. For highly diluted tracer suspensions, we have characterized tracers

currents and we have estimated the net electric current which occurs when both

positively and negatively charged tracers are considered.
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Introduction

Both in biological situations and in synthetic
devices charged particles are transported
across a channel whose radial section
ranges from the micro- to the nano-metric
size. In such systems the confining walls are
usually charged and the electrolyte organ-
izes around thewalls to screen their charges.
As a result, an inhomogeneous electrostatic
field develops inside the channel that affects
the transport of charged tracers along the
channel, leading to a charge-dependent
channel permeability. Until now, the con-
trol of such currents has generally relied on
applying an external driving whose origin is
usually either of electrical or hydrostatic
origin. Tuning the external drive allows, for
example, for the control of particle currents
as it happens in sodium–potassium pumping
in neurons.[1]

However, the shape of the geometrical
confinementprovides, in itself, analternative

route to transport and current control.
Different groups have shown that, in the
presence of external forces, the local
variation in channel section can induce
novel dynamical regimes such as particle
separation,[2–4] cooperative rectification[4]

and negative mobility[5] just to mention
a few among others.[6–8] In particular, it
has been shown that the inhomogeneous
distribution of particles along the radial
direction[9] canmodulate theoverall current
as it happens for neutral tracers under an
external field, such as gravity.

Moreover, when an electrolyte is
embedded in a varying-section channel,
novel dynamical regimes such as particle
separation and negative mobility can be
attained when the Debye length (charac-
terizing the decay of the electrostatic
potential from the channel walls) and the
channel section are comparable.[5] Such a
regime differs from previously studied
scenarios[10,11] when the Debye length
was much thinner than the channel’s cross
section.

Membrane permeability depends on
the membrane structure and also on how
molecules diffuse through it. It is in general
not obvious how to disentangle to what
extent the measured permeability is essen-
tially controlled by the morphology or by
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the dynamics. Therefore, we will not con-
sider the permeability associated to the flow
through a pore in response to pressure
gradients, as is usually analyzed in the
context of porous material. Rather, in this
pieceofwork,wewill study thepermeability
of a corrugated channel driven by a differ-
ence in the chemical potential at the ends
of the channel. Such a regime has the
advantage that thefluid ionsdiffuse through
can be considered at rest therefore simplify-
ing the overall dynamics. We will focus on
the interplay between diffusion and local
changes in the pore geometry, and we will
concentrate on the effect that channel
shape has on the diffusion of ions inside
the channel.

The permeability in ion channels, and in
membranes, quantifies permeation across
permeable substrates. The permeability
coefficient is an involved function that
depends both on intrinsic properties of the
soluble molecules, such as their concen-
tration and diffusion coefficient, on proper-
ties of the channel, such as its size and
geometry, and in the interaction between
the molecules and the channels, quantified
for example through the partitioning coef-
ficient (which quantifies the affinity of the
molecule to the channel) or a slip coef-
ficient. The Goldman–Hodkin–Katz theory
accounts for such ingredients and the
electrostatic interactions between mole-
cules and charged ions and predicts a
strong, non-linear dependence of the per-
meability when a voltage difference is
applied through the channel. This theory
emphasizes the relevant contribution of the
motion of the ions inside the channel to
the channel permeability.[12] The results we
will identify for the effective tracer diffu-
sivity along the channel will provide
fundamental understanding on the impact
that channel shape has on charged ion
permeability in both channels and mem-
branes. Specifically, we shall show that the
shape of the geometrical confinement
provided by the channel walls as well as
the electrolyte properties, captured by the
Debye length, lead to a significant modu-
lation of the overall channel permeability

for both charged and neutral tracers. In
particular, we find that the relative position
of the bottlenecks as compared to the
reservoirs at the end of the channel plays
a key role in the channel permeability,
therefore providing additional ways to tune
the net flux along the channel.

The structure of the text is as follows: In
Section Electrolyte Embedded in a Corru-
gated Channel: A Fick–Jacobs Approach,
we will derive the Fick–Jacobs equation for
charged tracers moving in a varying-section
channel, in Section Tracer Dynamics, we
will present our results and finally in Section
Results, we will provide our conclusions.

Electrolyte Embedded in a
Corrugated Channel: A Fick–
Jacobs Approach

We will consider a symmetric, z–z electro-
lyte embedded in a negatively charged
channel of varying half-section amplitude,
hðxÞ, although analogous results can be
obtained for an insulating channel, subject
to a gradient of salt concentration. In order
to describe the dynamics of suspended
charged tracers, one needs to analyze the
diffusion motion of the tracers and the
electrostatic potential inside the channel,
which constitutes a formidable task. How-
ever, the analysis can be significantly
simplified for highly diluted ionic concen-
trations and small z potential on the channel
walls, i.e. bze � 1 where b�1 ¼ kBT is the
inverse temperature (being kB the Boltz-
mannconstant)and e theelementarycharge.
In such a regime, the Poisson-Boltzmann
equation,which determines the electrostatic
potential in thermodynamic equilibrium,
can be linearized and simplified to the
Debye–Huckel equation for which the
electrostatic potential decays exponentially
with the distance from the wall over the
characteristic length scale, l � k�1, namely
the Debye length. We will also consider the
regimewhere the charged solute suspension
is highly dilute (tracer limit), when its
dynamics is described by an advection–
diffusion equation. In order to gain insight
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in theproperties of the channel permeability
upon variation of the channel geometry,
we will assume that the channel amplitude,
hðxÞ, varies slowly, i.e. @xhðxÞ � 1. Such an
assumption allows for a projection of the
advection–diffusion equation, which deter-
mines the dynamics of tracers inside the
channel, to an effective 1D equation, where
the varying-section of the channel enters as
an entropic effective potential. This approx-
imation, called Fick–Jacobs, has been
used[8,13,14] and validated[9,15–17] in many
different scenarios.

We will consider a channel, of length L,
whose section varies only along the x-direction
and it is constantalong thez coordinate,with
a simple, periodic shape whose half section
is determined by

hðxÞ ¼ h0 þ h1 cosð2px=Lþ fÞ ð1Þ
where h0 and h1 correspond to the average
and maximum modulation, respectively. In
turn, f determines the relative position of
the channel bottleneck with respect to the
reservoirs it is in contact with. For f ¼ 0 the
channels shows a bottleneck at x ¼ �L=2
while for f ¼ p the bottleneck occurs at
x ¼ 0. The dynamics of tracers embedded
in a electrolyte, quantified by its probability
distribution inside the channel Paðx; y; z; tÞ,
with a ¼ �1; 0 denoting positive, negative
and neutral tracers, is governed by the
convection-diffusion equation, which in the
overdamped regime, reads

@tPaðx; y; z; tÞ ¼ Dbr � Paðx; y; z; tÞrUaðx; y; zÞð Þ
þDr2Paðx; y; z; tÞ

ð2Þ

where D is the diffusion coefficient and
Ua is the total potential acting on the
tracers:

Uaðx; y; zÞ ¼ qaecðx; yÞ; jyj � hðxÞjzj � Lz=2

Uaðx; y; zÞ ¼ 1; jyj > hðxÞorjzj > Lz=2

that is periodic along the longitudinal
direction, Uaðx; y; zÞ ¼ Uaðxþ L; y; zÞ, and
confines the particles inside the channel. c
stands for the electrostatic potential inside
the channel that, due to the high dilution of

tracers is supposed tobeunaffectedby them,
and qa corresponds to the tracer valency
while e is the electron charge. We assume
that all tracers have the same intrinsic
diffusivity, D. Hence, the differences in
tracer diffusion we will describe later will
then be essentially due to the environment
in which the tracers will move.

The electrostatic potential, c, obeys the
Poisson equation

@2
xcðx; y; zÞ þ @2

ycðx; y; zÞ þ @2
zcðx; y; zÞ

¼ � rqðx; y; zÞ
e

ð3Þ

where e is the liquid dielectric constant and
the value of the electrostatic potential at
the interfaces depend on the conducting
nature of the channel walls. In the Poisson
equation rðx; y; zÞ stands for the local
charge density of the electrolyte. At
equilibrium, the charge density is derived
using the Boltzmann distribution of ionic
densities insidethechannel.Whenthechannel
walls are smoothly-varying, @xhðxÞ � 1, and
assuming lubrication @2

xcðx; yÞ � @2
ycðx; yÞ

and @2
zcðx; yÞ � @2

ycðx; yÞ, we can reduce
the Poisson equation to an ordinary differ-
ential equation for the potential c along
the channel. At a solid interface, the electric
field is perpendicular to the solid wall. As a
result, for a varying-section channel the
effective field along the channel corre-
sponds to the projection of the electric field
along the wall. However, for a smoothly-
varying channel amplitude, the projected
electrostaticfield reads:E ¼ E0 cosðuÞ, with
u ¼ arctan½@xhðxÞ� the local channel slope.
Since, @xhðxÞ � 1, the corrections on the
electric field due to changes in the channel
section are of second order in @xhðxÞ and
can be safely neglected in the following. For
low salt concentrations and small z potential
on channel walls, we can further simplify
the Poisson equation by linearizing the
charge density rqðx; yÞ 	 r0ð1�b zecðx; yÞÞ,
hence getting

cðx; yÞ ¼ z
coshðkyÞ

coshðkhðxÞÞ ð4Þ
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for a channel made by conducting walls or

cðx; yÞ ¼ s

2e
coshðkyÞ

sinhðkhðxÞÞ ð5Þ

for an insulating-walls channel character-
ized by a constant surface-density of
electric charge s. Such an assumption,
known as Debye–Huckel approximation,
allows to identify the screening length,
l ¼ k�1, of the electrostatic potential as
k2 ¼ bzer0=e where r0 is the number
density of the ions in the electrolyte and
z their valency. The approximation made
for the electrostatic field reflects in the
Debye length that results constant up to
second order corrections in @xhðxÞ. The
approximation made for the electrostatic
field reflects in the Debye length that
results to be independent on the longitu-
dinal coordinate up to second order in
@xhðxÞ. Finally, for @xhðxÞ � 1 we can
approximate the transverse profile of the
probability distribution function (pdf),
Pðx; y; z; tÞ, of a tracer of valency qa by
its profile at equilibrium, i.e., we can
factorize the pdf by assuming

Paðx; y; z; tÞ ¼ paðx; tÞ
e�bqacðx;yÞ

e�bAbðxÞ ð6Þ

bAaðxÞ ¼ �ln
1

4h0Lz

Z Lz=2

�Lz=2

Z hðxÞ

�hðxÞ
e�bqacðx;yÞdydz

" #
:

ð7Þ

After integrating over the channel cross
section we arrive at

_paðx; tÞ ¼ @xD bpaðx; tÞ@xAaðxÞ þ @xpaðx; tÞ½ �
ð8Þ

This expression encodes both the confin-
ing as well as the electrostatic potential
in the effective potential AðxÞ whose
shape resembles that of an equilibrium
free energy.

Since all the quantities of interest are
independent of z, without loss of generality
we can assume

RLz=2
�Lz=2

dz ¼ 1 and consider
all quantities per unit of transverse length,

Lz Defining the average, x-dependent,
electrostatic energy as

hVaðxÞi ¼ ebAaðxÞ
Z hðxÞ

�hðxÞ
qacðx; yÞe�bqacðx;yÞdy

ð9Þ

from the definition of AaðxÞ we can define
the dimensionless entropy along the chan-
nel, SaðxÞ, as kBTSaðxÞ ¼ hVaðxÞi �AaðxÞ,
from which we obtain

SaðxÞ ¼ ln
1
2h0

Z hðxÞ

�hðxÞ
e�bqacðx;yÞdy

" #

þ bhVaðxÞi:
ð10Þ

In the linear regime, bqacðx; yÞ � 1, we
can linearize the last expression getting

SðxÞ 	 ln
2hðxÞ
2h0

� �
ð11Þ

where the entropy has a clear geometric
interpretation, being the logarithm of the
space, 2hðxÞ, accessible to the center of
mass of a point-like tracer. Accordingly, we
introduce the entropy barrier, DS, defined
as

DS ¼ ln
hmax

hmin

� �
ð12Þ

that represents the difference in the
entropic potential evaluated at the max-
imum, hmax, and minimum, hmin, of channel
aperture.

Tracer Dynamics

A net, constant flux of tracers, of magni-
tude J, characterizes the steady state
motion of tracers in the channel whenever
there is a difference in the chemical
potential of the two baths the channel is
in contact with. Since there is no electro-
static potential difference between the
reservoirs at the two channel ends, and
the tracer density is small, the tracer
chemical potential in the reservoirs reads
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DmakBT ln ra. If ma differs at the ends of
the channel, the associated Dma will lead
to a tracer flux along the channel. We are
interested in understanding the dependence
of channel permeability on the channel
geometryas a result of the imposedchemical
potential difference.

From Eq. (8) in steady state we can
express the tracer density per unit length
profile inside the channel, naðxÞ, as

naðxÞ ¼ e�bAðxÞ � Ja
D

Z x

�L
2

ebAaðzÞdzþP

" #

ð13Þ
where we have used that for the tracers
paðxÞ and naðxÞ are proportional to each
other1. From naðxÞ, the local average tracer
density can be finally obtained as
raðxÞ ¼ naðxÞ

2hðxÞ; this relation provides the
natural link with the tracer densities in
the reservoirs. Specifically, we will consider
that the reservoirs at the two ends of the
channel are kept at tracer densities ra;1 and
ra;2, corresponding to an imposed chemical
potential difference Dma ¼ ln ra;1

ra;2
. Imposing

naðL=2Þ ¼ 2rahðL=2Þ and nað�L=2Þ ¼
2rahð�L=2Þ we determine the two con-
stants in Eq. (13):

Pa ¼ 2h �L
2

� �
r1e

bAa �L
2ð Þ ð14Þ

Ja ¼ �2Dh �L
2

� � ðra;2 � ra;1ÞebAa
L
2ð ÞR L

2

�L
2
ebAaðzÞdz

ð15Þ
where in the last expression we have
exploited the symmetry of the channel,
hðL=2Þ ¼ hð�L=2Þ that, using Eq. (7)
implies AðL=2Þ ¼ Að�L=2Þ. Eq. (15) pro-
vides the dependence of the tracers’ mass
flow due to both the gradient in tracer
concentration, rra � ðra;2 � ra;1Þ=L, and

the geometry of the channel. We can
rewrite Eq. (15) as

Ja ¼ �2DhðL=2Þrraxa ð16Þ

where the geometrical dependence on
the flux is encoded in the dimensionless
parameter

xa ¼ L
ebAa

L
2ð ÞR L

2

�L
2
ebAaðzÞdz

ð17Þ

According to Eqs. (16,17) xa captures the
dependence of tracers flux upon both
channel geometry and tracers charge. More-
over, Eq. (17) shows that xa is independent
onthedrive,rra, responsible for theonsetof
the flux. In particular, when xa > 1, channel
corrugation enhances tracers’ flow as com-
pared to the case of a flat channel hence
leading to a larger channel permeability.
the mass flux due to the corrugation of the
channel is enhanced leading to a larger
channel permeability while a reduced per-
meability will be obtained for xa < 1.

Eq. (17) shows that for constant channel
sections xa ¼ 1 irrespectively to tracers’
charge. Therefore, according to Eq. (16)
tracers’ flux, and hence channel perme-
ability, are insensitive to tracer charge
when the channel section is constant,
provided they undergo the same chemical
potential gradient rra. Tracer charge will
determine the partitioning of the tracer
inside the channel and its distribution in
the channel section, but will not affect its
effective diffusivity.

The dependence of xa on the channel
varying geometry is quite involved, as can be
appreciated in Eq. (17). We can gain insight
into the impact that channel corrugation has
on its permeability by analyzing the partic-
ular casewhere the channel amplitudevaries
linearly, namelyhðxÞ ¼ h0 � h1 xj j=L. In this
geometry, bAðxÞ 	 �lnðh0Þ þ h1 xj j=ðh0LÞ.
This regime can be achieved, for example, if
the channel corrugation is weak and the
electrostatic potential varies linearly. Or,
moregenerically, onecanconsidera channel
whose section do not change strongly and
hence one can identify the coupled effect of

1We choose the tracer density, naðxÞ, instead
of the tracer probability, paðxÞ, because it
provides a more direct connection with the
chemical potential in the reservoirs the channel
is in contact with. The density in such reservoirs
constitutes the natural control parameter.
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channel corrugation andelectrostatic poten-
tial variation through an effective, uniform
variation along the channel.

For neutral tracers this regime corre-
sponds, exactly, to a channel with a linearly
increasing cross section. For charged tracers,
in the regime of a very narrow double layer,
kh0 
 1, tracers are essentially uniformly
distributed in the channel section; accord-
ingly, they will behave as neutral tracers.
Under these assumptions we have

Z L
2

�L
2

ebAðzÞdz ¼ 2
Z L

2

0
e lnh0=Lþh1=h0zdz

¼ 2L
ebh1=h0

L
2 � 1

h1

ð18Þ

Substituting the last expression in Eq. (16)
andusing the fact thatAðL=2Þ �Að�L=2Þ ¼
lnðh0=LÞ þ h1=2h0 we get

xa ¼ 1
1� e�bh1=h0L

2

ð19Þ

Finally, recalling that in this case bDA ¼
h1=2h0 the last expression reads

xa ¼ 1
1� e�bDA ð20Þ

Interestingly the last expression shows that
the permeability does not depend sym-
metrically in DA. Hence, the permeability
of a concave channel, where the minimal
aperture is in the center of the channel, will
be smaller than the complementary chan-
nel where the center of the channel has
the largest aperture. For a channel with the
same mean section, the difference in the
permeability for channels with opposed
curvature will differ exponentially with the
channel corrugation.

It is insightful to analyze the limits

lim
DA!0

xa ¼ 1

lim
DA!1

xa ¼ bDA

lim
DA!1

xa ¼ 0

which clearly show the strong dependence
of the permeability on the effective, free

energy barrierDA. This free energy barrier,
which encodes the change in channel
section and the local modifications this
induces in the electrostatic potential, con-
trols the impact of the environment on
the net transport properties of charged
tracers (Figure 1).

Results

In order to characterize quantitatively the
dependence of the channel diffusivity as a
function of tracer charge and for different
channel geometries and electrolyte con-
centrations, we have numerically evaluated
Eq. (17). For the simple channel profile,
characterized by Eq. (1), neutral tracer
diffusion is independent of the channel
shape. Hence, the deviations we will
analyze emerge from a correlation between
the channel corrugation and the local
variations in electrostatic potential. As
shown in Figure 2a, xa depends on the
channel shape and the relative position of
the maximum aperture with respect to the
channel ends, quantified by the phase shift
f. The variation indicates that xa, and
hence the permeability, depends symmetri-
cally on the distance of the channel
maximum with respect to the channel
end. The impact of the channel shape on
the tracers has opposite trends depending
on the tracer’s charge. Negative tracers

Figure 1.

Electrostatic field inside a varying-section channel

whose bottleneck half-amplitude h0 – h1 is compa-

rable with the Debye double layer thickness k�1 .
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experience a net repulsion form the solid
surfaces and will preferentially accumulate
in the channel center. They display a
maximum in permeability when the bottle-
neck is in the middle of the channel, while
theminimum in permeability happens in the
opposite situation. Positive tracers exhibit a
complementary behavior. These tracers
accumulate preferentially at the channel
walls and benefit from the shape when the
charge accumulated at the two walls do
not interfere with each other. The non-
monotonous behavior of the permeabilities
leads to different scenarios where the ratio
between the permeabilities of charged and
neutral tracers can vary significantly. We
can identify different channel configurations
for which one of the three species has the
largest permeability. For example, positive

tracers (hence attracted from the negatively
charged walls) experience the maximum
permeability when the channel shows a
bottleneck at x ¼ 0, while negatively
charged tracers are fastest in the case of
bottlenecks at channel edges. Alternatively,
for f ¼ 0:4; 0:6 neutral tracers are faster
than both positively and negatively charged
tracers.

Chargedtracerpermeabilitiesare strongly
affected by the electrolyte properties, which
are captured by the Debye length, l, and
depend on the combined properties of the
channel and the electrolyte, as it has been
shown for the case of electrostatically driven
tracers.[5] Figure 2b shows that if l and
the channel average amplitude, h0, are not
comparable, the modulation in the perme-
ability due to the geometrical confinement

Figure 2.

Tracers permeability. Top Left: particle current as a function of the phase f for positive (red) and negative (blue)

tracers, normalized by the current of neutral tracers, for different values of the corrugation,DS ¼ 0; 1:1; 2; 3:7

for dotted, dashed and long-dashed respectively for kh0 ¼ 10 and Dm ¼ 1. Top Right: charged tracers current,

normalized by the current of neutral tracers, as a function of the Debye length expressed in units of kh0 and

Dm ¼ 1. Bottlenecks (wedges) are characterized by dotted (solid) curves while the color code captures the

charge of the tracers and the amplitude of the channel corrugation: red (blue) stand for positive (negative)

tracers with while the thickness of the line id proportional to the amplitude of the corrugation, DS ¼ 2; 3:7.

Bottom: electric current defined as, J ¼ Jþ � J�, normalized by neutral tracers current J0, calculated from the

data of the corresponding above panels.
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vanishes and both positively and negatively
charged tracers experience the same perme-
ability. For kh0 � 1 the electrolyte is uni-
form in the channel section, while for
kh0 
 1 the electrolyte is localized at the
wall and the fluid inside the channel is
essentially neutral. In both cases all tracers
behave analogously and become insensitive
to the channel corrugation. In contrast, when
kh0 	 1 the permeabilities show maxima
(minima) according to tracerś charge. The
regime kh0 	 1 can be obtained in nano-
fluidic devices for which the Debye length
(that is typically l 	 1 nm) matches the
typical amplitude of the channel h0. Alter-
natively the same regime can be achieved
in microfluidic devices by exploiting low
polar solvents characterized by larger
Debye lengths, e.g. l 	 1:6mm for CHB-
decalin.[18]

Accordingly, Figure 2b shows that
negatively charged tracers experience
larger permeabilities for f ¼ 0:5 than for
for f ¼ 0 (compare the blue thick (thin)
solid and blue thick (thin) dashed lines)
while the opposite holds for positively
charged tracers that experience larger a
permeability when the bottleneck is at the
middle of the channel (f ¼ 0). The qual-
itatively different response of positively
and negatively charged tracers to channel
corrugation indicates the relevance of
the geometrical coupling together with
the electrostatic attraction or repulsion
to the walls; such a dependence is encoded
in the free energy dependence, DAa. The
analysis at the end of the previous section
illustrates how a change in the sensitivity
to spatial variations of the effective free
energy has a strong impact in tracer
diffusivity. The results obtained highlight
the relevance of the regime where the
Debye length and channel section are
comparable in size.

Since tracers move with different effec-
tive diffusivities along the channel, depend-
ing on their charge, tracer motion as a
result of the applied density gradient will
induce also a net electric current. This is
an electric current induced by the tracers
because the electrolyte is in equilibrium,

and corresponds to a coupled transport
effect induced only by geometrical varia-
tions2. For simplicity, we will consider that
the channel is subject to the same density
gradient for negative, positive and neural
tracers, Dmþ ¼ Dm� ¼ Dm. In this case,
rather than computing the electric current
itself, I ¼ Jþ � J�, it is insightful to analyze
the tracer electric current relative to the
reference mass current of neutral tracers,
I ¼ Jþ � J�

i ¼ I
J0

¼ xþ � x�
x0

ð21Þ

Which, according to Eq. (17), can be
expressed in terms of the corresponding
effective tracer permeability. Figure 2c
shows the relative electric current as a
function of the position of the maximum
aperture of the channel. The results show
that a relevant current can be induced by
the tracer density gradient and that the
current can change its sign depending
on the channel geometry. The channel
where the relative electrostatic current is
positive correlates with the situations
where the diffusion of positive tracers is
enhanced, as could be expected. Therefore,
it is possible to control the magnitude and
the sign of the electric current by properly
tuning the position of the channel bottle-
neck. In particular, the maxima of the
electric current are obtained for f ¼ 0;p,
i.e. when the bottleneck is at the center of
the channel or at channel edges and the
absolute value of the current is maximized
in the bottleneck case. Hence, the shape of
the channel controls the amplitude of the
net electric current induced by the tracers
density contrast imposed at channel ends.
Figure 2d shows that the amplitude of the
current is modulated by the Debye length,
l, and the maximum is achieved when is
comparable to the characteristic channel
section. Figure 2d also shows that this

2We assume that electroneutrality is achieved
at both ends of the channel yet we impose a
density contrast at channel ends for both
positively and negatively charged tracers.
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current vanishes when the double layer is
much thinner or wider than the channel
aperture. In this situation the inhomoge-
neous electrolyte distribution in the chan-
nel is negligible. This feature highlights
the fact that the induced tracer current
emerges from the combined geometric
modulation and the charge distribution
across it.

Therefore, varying the channel geome-
try and the electrolyte ionic strength it is
possible to control both the magnitude and
the sign of the electric current.

The modulation in channel geometry as
well as the magnitude of the Debye length
affects also the tracer distribution along
the channel. Figure 3 shows that even for
neutral tracers, for which the destiny profile

is independent of l, the density profile is
affected by the geometrical constraint. In
particular, in the case of a flat channel, the
chemical potential contrasts imposed at the
ends of the channel leads to a linear density
profile inside the channel (data not shown).

On the contrary, when the section of the
channel varies, we observe a departure
from the linear profile that is asymmetric
with respect to the channel geometry. In
particular, for f ¼ 0 (f ¼ 0:5) we observe
an excess of accumulation (depletion) of
particles close to the reservoir character-
ized by the larger chemical potential while
the opposite holds in the vicinity of other
reservoir. Interestingly, the excess of par-
ticle density is sensitive to the derivative
of channel section; the maximum of the

Figure 3.

Neutral tracers density profile, normalized by the density profile in the case of a flat channel for a corrugated

channels characterized by a bottleneck, f ¼ 0 (left), or wedge, f ¼ 0:5 (right). Different markers stand for

different values of the corrugation: DS ¼ 1:1; 2; 3:7 for squares, circles and triangles, respectively.

Figure 4.

Charged tracers density profile for positively (open points) and negatively (filled points) charged tracers,

normalized by the density profile in the case of a flat channel in a corrugated channels characterized by a

bottleneck, f ¼ 0 (left), or wedge, f ¼ 0:5 (right) for kh0 ¼ 1; 10; 100 (circles, squares and diamonds

respectively) with DS ¼ 3:7, being channel walls negatively charged.
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deviations from the linear profile is
obtained when @xhðxÞ is maximum.

When tracers are charged, the effect of
the confinement on tracers ́ density is
amplified. Figure 4 shows an enhanced
accumulation (depletion) as compared to
the case of neutral tracers. In particular,
positively charged tracers, (attracted by the
negatively charged channel walls), tend to
accumulate for f ¼ 0, i.e. when the channel
bottleneck is at x ¼ 0 while the opposite
holds for negatively charged tracers. The
amplitude of the excess accumulation/
depletion of tracers has a non-trivial
channel geometry. In particular, comparing
the two panels of Figure 4 we see the
amplitude of the modulation in the density
profile is larger for f ¼ 0:5.

The electrolyte properties play a relevant
role in determining tracer density profiles.
As shown in Figure 4, the maximum
amplitude of the modulation in the density
shows a non-monotonous behavior with l,
and its maximum is obtained for kh0 	 10,
i.e. when the amplitude of the bottlenecks,
kðh0 � h1Þ 	 0:5, is comparable to the
Debye length.

Conclusion

We have studied the impact of the channel
shape on the permeability of charged and
neutral tracers. We have identified a novel
mechanism that controls tracer perme-
ability due to variations in the channel
geometry.

In particular, we have studied the geo-
metrical dependence of the channel per-
meability for neutral and charged tracers,
when the system is driven by means of a
chemical potential contrast imposed by
controlling tracers concentration at chan-
nel ends. In order to keep analytical insight,
wehaveassumed that the channel amplitude
varies smoothly, @xhðxÞ, along its longitudi-
nal axis, x. In such a regime, a lubrication
approximation is reliable and allows for a
significative simplification of the analysis.
Moreover, in such a regime it is possible
to exploit the Fick–Jacobs approximation

that allows us to factorize the distribution
probability of tracers, hence reducing the
problemtoa1Dproblemwhose solutioncan
be accessed analytically.

We have exploited such a framework to
characterize the permeability of a corru-
gated channel for the transport of positive
and negative charged and neutral tracers.
For these systems, we have found that the
relative magnitude of the permeabilities of
both positively and negatively charged
tracers as well as neutral tracers can be
tuned by the geometry of the channel,
leading to a variety of scenarios where
positively (negatively) charged tracers, can
experience larger or smaller permeabilities
than neutral ones.

As it has alreadybeen shown in the case of
electric driving forces,[4] the geometrically
induced control on tracers current is sensitive
to electrolyte properties captured by the
Debye length, l. The sensitivity of tracer
diffusion to channel corrugation is maximum
when l is comparable to the characteristic
channel section. Such a regime kh0 	 1 can
be obtained in nanofluidic devices for which
the Debye length, that is typically between 1
and 10nm matches the typical amplitude, h0
of the channel, or in microfluidic devices by
exploiting low polar solvents characterized
by larger Debye lengths such as l 	 1:6mm.
In contrast, for very wide and narrow double
layers, i.e. forkh0 
 1orkh0 � 1, the impact
of channel corrugation vanishes asymptoti-
cally. The interplay between channel corru-
gation and electrolyte structuring across it
leads to a new cross transport mechanism.
Specifically, we have found that when the
Debye length is comparable to the channel
section, a net electric current develops when
a chemical potential gradient of positive
and negatively charged tracers acts at the
channel ends. This corrugation-induced cross
transport effect can be of significance in the
electric transport through ionic channels and
deserves to be analyzed in detail.
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Appendix A
In order to keep the argument of the
logarithm in Eq. free-en dimensionless, we
have introduced a prefactor, 1=2h0Lz. In
the following we show that the choice of
this prefactor is arbitrary since it will not
affect either the probability distribution
pa or its flux. The starting point are
Eqs. (2,6,7) that we report here:

@tPaððx; y; z; tÞ ¼ Dbr � Paððx; y; z; tÞrUaðx; y; zÞð Þ
þDr2Paððx; y; z; tÞ

with the ansatz:

Paðx; y; z; tÞ ¼ paðx; tÞ
e�bqaecðx;y;zÞ

e�bAaðxÞ

bAaðxÞ ¼

� ln
1

2h0Lz

Z
�Lz=2Lz=2

Z
hðxÞ
�hðxÞe

�bqaecðx;y;zÞdydz
� �

:

We can rewrite the last equation as bAaðxÞ ¼
�ln 1

2h0Lz

h i
� ln

R Lz=2
�Lz=2

R hðxÞ
�hðxÞe

�bqaecðx;y;zÞdydz
h i

:

From the last expression we can calculate
e�bAaðxÞ ¼ e�bA0 e�bA1ðxÞ whereA0 ¼ ln 1

2h0Lz

� �
and A1ðxÞ ¼ ln

R Lz=2
�Lz=2

R hðxÞ
�hðxÞe

�bqaecðx;yÞdydz
h i

.

Substituting the last expressions in Eq. (1)
and integrating in y we get:

_p
Z

dy
e�bqaecðx;yÞ

e�bA0 e�bA1ðxÞ ¼

Db@x

Z 1

�1
paðx; tÞ

e�bqaecðx;yÞ

e�bA0 e�bA1ðxÞ @xU

þD@2
xpaðx; tÞ

e�bqaecðx;yÞ

e�bA0 e�bA1ðxÞ dy

where in the last step we have neglected the
terms like @y

R ½:::�dy since they provide null
contributions. From the last equation it is
clear that we can get rid of the term e�bA0

since, being independent on both, x and y, it
can be taken out of the integrals and
differentiation operators. Recalling thatR
dy e�bqaecðx;yÞ

e�bA1 ðxÞ ¼ 1 and performing the inte-
gral in the last expression we get

_paðx; tÞ ¼ @xD bpaðx; tÞ
@A1ðxÞ
@x

þ @xpaðx; tÞ
� �

Since @xA1ðxÞ ¼ @xAaðxÞ we can rewrite
the last expression as

_paðx; tÞ ¼ @xD bpaðx; tÞ
@AaðxÞ

@x
þ @xpaðx; tÞ

� �

showing that the normalization does not
affect the evolution of the tracer proba-
bility along the channel.
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